Trend in Operando Nanoscale Characterization using Scanning Probe Microscopy
نویسنده
چکیده
2017[9] THE HITACHI SCIENTIFIC INSTRUMENT NEWS ー 2017 Vol.8 Fine-grain control of the structure of materials is widely regarded as a crucial technology undergirding innovation in materials science. Today, thanks to nanotechnology initiatives launched at the beginning of the 21st century, materials and device elements with a fi ne grain structure can be produced and distributed as nano-products. According to the International Technology Roadmap for Semiconductors (ITRS), prototype development for LSI chips with 10-nm gate lengths is already underway, and single-digit nanoscale elements are expected to become a reality within the next few years. The number of dopant atoms that can be present in the channel of this sort of nanosized transistor is on the order of 1. Developments like these dictate that, by necessity, cutting-edge nanoscale measurement technologies with single-atom resolution will become standard, and will be essential for innovation to occur. Measurement technologies that allow single-atom analysis in real space include transmission electron microscopy (TEM) and scanning probe microscopy (SPM).
منابع مشابه
An overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملAn overview of scanning near-field optical microscopy in characterization of nano-materials
Scanning Near-Field Optical Microscopy (SNOM) is a member of scanning probe microscopes (SPMs) family which enables nanostructure investigation of the surfaces on a wide range of materials. In fact, SNOM combines the SPM technology to the optical microscopy and in this way provide a powerful tool to study nano-structures with very high spatial resolution. In this paper, a qualified overview of ...
متن کاملRoutine femtogram-level chemical analyses using vibrational spectroscopy and self-cleaning scanning probe microscopy tips.
Simultaneous structural and chemical characterization of materials at the nanoscale is both an immediate need and an ongoing challenge. This article reports a route to address this need, which can be rapidly adopted by practitioners, by combining the benefits of widely available scanning probe microscopy and vibrational microspectrometry. In an atomic force microscope (AFM), the probe tip can p...
متن کاملNanometer-Scale Patterning on PMMA Resist by Force Microscopy Lithography
Nanoscale science and technology has today mainly focused on the fabrication of nano devices. In this paper, we study the use of lithography process to build the desired nanostructures directly. Nanolithography on polymethylmethacrylate (PMMA) surface is carried out by using Atomic Force Microscope (AFM) equipped with silicon tip, in contact mode. The analysis of the results shows that the ...
متن کاملQuantitative operando visualization of the energy band depth profile in solar cells
The energy band alignment in solar cell devices is critically important because it largely governs elementary photovoltaic processes, such as the generation, separation, transport, recombination and collection of charge carriers. Despite the expenditure of considerable effort, the measurement of energy band depth profiles across multiple layers has been extremely challenging, especially for ope...
متن کامل